Proposition 4

In an isosceles triangle the angles at the base are equal.

Draw any isosceles triangle such as $A B C$ above. Drawing a central angle such that sides $A B$ and $A C$ are radii of the circle will automatically create an isosceles triangle when points B and C are connected. Side BC will then be considered the base of the triangle. If D is the midpoint of side $B C$ then line AD creates two angles BAD and DAC, which are equal. It is clear that triangles BAD and DAC must be identical because side $B A$ equals side $A C$, (since they are both radii of the same circle), side $A D$ is common to both triangles and angles BAD and DAC being equal we have satisfied the criterion of Proposition III, the Side-Angle-Side proposition. Therefore triangles BAD and DAC must be identical, and that being the case the angle at B must be equal to the angle at C.

